Background

Compared with cross-sectional studies, a longitudinal design can significantly reduce the confounding effect of inter-individual morphological variability by using each subject as his or her own control. As a result, longitudinal imaging studies are increasing in popularity in various aspects of neuroscience. Changes in gray matter that makes up the cortical sheet are for example manifested in aging, Alzheimer’s disease, Huntington’s disease, multiple sclerosis and schizophrenia. In vivo cortical thickness measures could be useful as marker of disease progression or onset; this is an active and important area of research. Longitudinal imaging-based biomarkers are thus of great potential utility in evaluating the efficiency of disease-modifying therapies. For these reasons, developing more robust and reliable measures of cortical, subcortical and white matter atrophy may have a profound clinical impact. The current methods that utilize cross-sectional approaches, in which images are processed individually introduce the natural variability of the brain as a confound. We sought to develop and validate a longitudinal approach that takes advantage of intra-subject longitudinal acquired scans to improve the sensitivity and reliability of automatic neuro-imaging morphometric measures.

Method

- The FreeSurfer cortical and subcortical segmentation and parcellation procedure involves complex iterative nonlinear optimization problems, such as topology correction, nonlinear atlas registration, and the nonlinear spherical surface registration. The final results can be sensitive to the selection of a particular starting point.
- Thus, by initializing the processing of time points in a longitudinal data series with the same information, we can reduce the variations and improve the robustness and sensitivity of the overall longitudinal analysis, making it possible to detect subtle longitudinal changes.

- In contrast to older methods (Han 2006) the longitudinal pipeline we present is designed to be unbiased with respect to any time point. Instead of initializing it with information from a specific time point (and thus creating a bias), a template volume is created and processed with FreeSurfer. It can be seen as an initial guess for the segmentation and surface reconstruction.

Results

As described above, the first step in the longitudinal analysis is the creation of an unbiased template together with the co-registration of all input images. Figure 2 shows the unbiased template of a series of 12 images (with atrophy) taken over a span of more than 4 years. The median is crisp as opposed to the more blurry mean.

Test-Retest

In order to evaluate the reliability of the longitudinal scheme we analyze the variability in a test-retest study consisting of 14 healthy subjects with two time points (TP) taken 14 days apart. The images are T1-weighted MPRAGE full head scans (Siemens Sonata 1.5T). Figure 3 shows results of estimated subcortical volume change, comparing the independently processed time points (CROSS) and the longitudinal scheme (LONG). It can clearly be seen that LONG reduces variability in all regions, which leads to an increased power (or reduction of subjects) in a power analysis (Figure 4).

Simulated Atrophy

To assess the sensitivity of the longitudinal analysis we applied approximately 2% simulated atrophy to the hippocampus in the left hemisphere of T1P in the same population and used this synthetic image as T2P. As can be seen in Figure 5 (left) the longitudinal analysis not only detects the atrophy more accurately in the left hemisphere, but also correctly shows less variability and a zero mean in the right hemisphere (Figure 5, right) as opposed to the independent processing (cross).

Conclusion

- We demonstrated that a robust template image can be taken as an initial estimate of the location of anatomical structures in a longitudinal scheme to improve accuracy and reduce variability of the automatically constructed segmentations in FreeSurfer.
- The scheme is completely unbiased with respect to any time point and therefore does not produce the common problem of differing results when switching or reversing the order.
- Due to the robust creation of the template, adding additional time points later is not expected to have a significant influence and therefore does not necessarily imply a re-processing of all time points if the template contains enough temporal information.
- The presented longitudinal scheme is freely available together with the software package FreeSurfer and has been successfully applied in our lab and by others for test-retest and longitudinal studies.

References